## HIGHLY REGIOSELECTIVE RING-OPENING OF α- SUBSTI-TUTED CYCLIC ACID ANHYDRIDES CATALYZED BY LIPASE

Jun Hiratake, Kazuyoshi Yamamoto, Yukio Yamamoto<sup>†</sup>, and Jun'ichi Oda\*

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

<sup>†</sup> Department of Chemistry, College of Liberal Arts and Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan

Summary: Lipase Amano P irreversibly catalyzed a ring-opening of  $\alpha$ -substituted cyclic acid anhydrides 1 preferentially at the less hindered carbonyl goup to give monoesters with high regioselectivity.

Potential of lipases as an acylation-catalyst for organic synthesis in non-aqueous media is of considerable current interest.<sup>1</sup> In particular, a regioselective transformation of a functional group is, as well as a stereoselective one, an important factor which must be controlled in synthesis. In this regard lipases have been used for regioselective acyl-exchange of sugars<sup>2</sup> and glycols;<sup>3</sup> however, regioselective transformations of carboxyl groups are limited.<sup>4</sup> We reported in the previous paper that a microbial lipase well catalyzed the stereoselective ring-opening of prochiral cyclic acid anhydrides in an organic solvent.<sup>5</sup> Some lipases have been reported to have a preference for carboxylic acids without  $\alpha$ -substituents.<sup>6</sup> Therefore, if cyclic anhydrides with an alkyl substituent at the  $\alpha$ -position are used, a preferential ring-opening at the less hindered carbonyl group would be anticipated.

On this basis we wish to report a regioselective ring-opening of racemic cyclic acid anhydrides 1 with ethanol catalyzed by a lipase from *Pseudomonas fluorescens* (Amano P) in diisopropyl ether. After the ring-opening of 1, the two compounds was obtained: the monoester 2 and 3. The ratios 2:3 were measured by converting them into the corresponding amide-esters 4 and  $5^7$  followed by HPLC analyses<sup>8</sup> of them. This method allowed the ratios of the four isomers (2, 3 and their enantiomers) to be determined precisely.



The results of the lipase-catalyzed reaction together with those of non-enzymatic ethanolysis of 1 are listed in Table 1. The lipase irreversibly catalyzed the ring-opening at the less hindered side of all the anhydrides 1 except for 1e and 1i, yielding racemic monoesters 2 in high chemical yields. The di-substituted anhydrides 1e and 1i were, however, poor substrates for the lipase presumably because of bulkiness of the substituents. The product mixture 2

and 3 was converted to a mixture of the lactones 6 and 7 by functional group-selective reduction.<sup>9</sup> As shown in Table 1, either of the lactones 6 and 7 was obtained from the same product mixture 2 and 3 in good chemical yields; the ratios of 6 and 7 agreed well with those of 2 and 3.

|        | Aı | nhydri     | de 1      | Time         | Yield of | Ratios           | Ratiosb  | Reduction            | Yield of       | Ratios           |
|--------|----|------------|-----------|--------------|----------|------------------|----------|----------------------|----------------|------------------|
|        | n  | <u>R</u>   | <u>R'</u> | <u>(h)</u>   | 2,3 (%)  | 2:3              | (2:3)    | Method <sup>c</sup>  | <u>6,7 (%)</u> | 6:7              |
| а<br>ь | 1  | Me<br>; Pr | Н<br>Н    | 17<br>6 days | 100      | 92 : 8<br>99 : 1 | (57:43)  | BH3-SMe2<br>BH2-SMe2 | 87<br>88       | 93 : 7<br>99 : 1 |
| U      | 1  | 1-11       |           | 0 days       | 100      | <i>))</i> . 1    | (7), 21) | LiBHA                | 96             | 2:98             |
| с      | 1  | Ph         | н         | 24           | 100      | 100 : 0          | (69:31)  | BH3-SMe2             | 70             | 100 : 0          |
|        |    |            |           |              |          |                  |          | LiBH4                | 94             | 0 : 100          |
| đ      | 1  | OBn        | Н         | 67           | 100      | 48 : 52          | (9:91)   | BH3-SMe2             | 80             | 49:51            |
| е      | 1  | Me         | Me        | 13 days      | 100      | 82 : 18          | (75:25)  | BH3-SMe2             | 83             | 82 : 18          |
| f      | 2  | Me         | н         | 24           | 100      | 80 : 20          | (49:51)  | BH3-SMe2             | 70             | 83:17            |
| g      | 2  | i-Pr       | Η         | 25           | 100      | 100 : 0          | (82:18)  | BH3-SMe2             | 76             | 100 : 0          |
|        |    |            |           |              |          |                  |          | LiBH4                | 74             | 0 : 100          |
| h      | 2  | Ph         | Н         | 22           | 100      | 93:7             | (46:54)  | BH3-SMe2             | 74             | 95 : 5           |
| i      | 2  | Ph         | Et        | no reaction  |          | -                | -        | •                    | -              | -                |

Table Regioselective Ring-Opening of 1 with Ethanol Catalyzed by Lipase Amano P and Functional Group-selective Reduction of Product 2 and 3a

<sup>a</sup> Reaction conditions; 1 (10 mmol), EtOH (11 mmol), lipase Amano P (1.0 g), dry i-Pr2O (100 mL), 25 <sup>o</sup>C. Spontaneous ethanolysis was not observed without the lipase in this condition. <sup>b</sup> Results of the reac-

tion without the lipase: 1 (10 mmol), EtOH (170 mmol), 25 °C, 1 week, <sup>c</sup> See reference 9.

The regioselectivity, i.e. the ratios 2:3, improved by increasing the size of the substituent R, almost complete regioselection was achieved for 1b, c, and g. The anhydride 1d, however, gave almost 1:1 mixture of the monoesters 2d and 3d. This result can be explained as follows: the carbonyl group near the oxygen atom is more reactive to the nucleophilic attack of ethanol than the other (2d : 3d = 9 : 91 for spontaneous ethanolysis), whereas the lipase catalyzes the reaction preferentially at the less hindered side; hence, the electronic and the steric factors compensated with each other in the lipase-catalyzed reaction of 1d.

Acknowledgment: We gratefully acknowledged a Grant-in-Aid from the Ministry of Education of Japan for Scientific Research. We also thank Amano Pharmaceutical Co., Ltd. for generous supply of the lipase.

## **References and Notes**

- 1. (a) Kirchner, G.; Scollar, M. P.; Klibanov, A. M. J. Am. Chem. Soc. 1985, 107, 7072-7076. (b) Tombo, G. M. R.; Schär, H. -P.; Busquets, X. F.; Ghisalba, O. Tetrahedron Lett. 1986, 27, 5707-5710. (c) Francalanci, F.; Cesti, P.; Cabri, W.; Bianchi, D.; Martinengo, T. Foà, M. J. Org. Chem. 1987, 52, 5079-5082. (d) Wang, Yi-Fong; Wong, Chi-Huey J. Org. Chem. 1988, 53, 3127-3130.
- Sweers, H. M.; Wong, Chi-Huey J. Am. Chem. Soc. 1986, 108, 6421-6422.
  (a) Therisod, M.; Klibanov, A. M. J. Am. Chem. Soc. 1987, 109, 3977-3981. (b) Cesti, P.; Zaks, A.; Klibanov, A. M. Appl. Biochem. Biotech. 1985, 11, 401-407.
- 4. (a) Guibé-Jampel, E.; Rousseau G. Tetrahedron Lett. 1987, 28, 3563-3564. (b) Guibé-Jampel, E.; Rousseau G.; Salaün, J. J. Chem. Soc., Chem. Commun. 1987, 1080-1081. 5. Yamamoto, K.; Nishioka, T.; Oda, J.; Yamamoto Y. Tetrahedron Lett. 1988, 29, 1717-1720.
- (a) Takahashi, K.; Yoshimoto, T.; Ajima, A.; Tamaura, Y.; Inada, Y. *Enzyme* 1984, *32*, 235-240. (b) Nishio, T.; Chikano, T.; Kamimura, M. *Agric. Biol. Chem.* 1988, *52*, 1203-1208.
  Product mixture 2 and 3 (0.1 mmol), SOCI2 (0.12 mmol), (S)-(-)-1-(1-naphthyl)ethylamine (0.11 mmol), NEt3
- (0.3 mmol), dry toluene (2 mL), 0°C, 1 hr.
- 8. Silica gel column (NUCLEOSIL 50-5, 4 mm x 25 cm); eluent, hexane-AcOEt (5 : 2); 280 nm. The four isomers (4, 5 and their diastereomers) were base-line separated except for the diastereomers 5f.
- 9. Hiratake, J.; Inagaki, M.; Yamamoto, Y.; Oda, J. J. Chem. Soc., Perkin Trans. J. 1987, 1053-1058.

(Received in Japan 23 January 1989)